
Int. J. Advanced Networking and Applications 581
Volume: 02, Issue: 02, Pages:581-596 (2010)

Intelligent Methods of Fusing the Knowledge
During Incremental Learning via Clustering In

A Distributed Environment

Dr. P. Nagabhushan
(On lien from the Department of Studies in Computer Science, University of Mysore, Mysore � 570 006)

Presently with Bangalore Technological Institute (BTI) and Bangalore Educational Society for Technology Advancement
and Research (BESTAR), Bengaluru � 560 035

Email: pnagabhushan@hotmail.com
Syed Zakir Ali

Department of Studies in Computer Science, University of Mysore, Mysore -570006
Email: zakirsab@gmail.com

Pradeep Kumar R
Amphisoft Technologies Private Limited, Coimbatore

Email: pradeep@amphisoft.com

--ABSTRACT---
One of the ways of learning from the data which is physically distributed over multiple locations is to have a common
learning mechanism at each of the source and knowledge of each of the learnt concepts has to be transmitted to a
centralized location for assimilation. In this research, clustering is employed as a mechanism of learning and a cluster is
viewed as a concept which is described by a set of variables. The set of variables which describes each of the clusters is
being referred to as a knowledge packet (KP). As histograms have the generic ability to characterize any type of data, a
histogram based regression line has been used as one of the variable to describe a KP. For online monitoring of the
progression in learning apart from achieving computational ease and efficacy, the KPs at the centralized location are fused
incrementally to get the overall knowledge. If learning mechanisms employed are data sequence sensitive, different
combinations of merging the thus generated KPs may result in altogether a different overall knowledge. Further, the
distance measure employed to find distance between the KPs in obtaining the optimal sequence of merging, may also
result in a different overall knowledge. This phenomenon is being referred to as the problem of order effect. To minimize
or avoid the order effect, a density based spatial clustering of applications with noise (DBSCAN) algorithm, which is
insensitive to the order of presentation of data samples is used to learn from the data chunks and a novel methodology of
finding the distance between the batches of data and there by finding the more optimal sequence of merging the KPs is
presented. A specially designed distance measure for histogram based objects (histo-objects) is employed to find distance
between the KPs and the nearest KPs are merged incrementally till certain conditions are satisfied. The proposed methods
provide a robust mechanism of avoiding order effects. Since it is difficult to get the real distributed datasets, effectiveness
of the proposed approaches is demonstrated with a carefully designed synthetic dataset. Some of the bench mark datasets
were modified to simulate the distributed environment and experimentations with some of them show an accuracy of up to
100%.

Keywords - Cluster analysis, Incremental augmentation of knowledge, Order effect, Regression Analysis.

--
Date of Submission: July 16, 2010 Date of Acceptance: August 14, 2010

--

I. INTRODUCTION

When there is requirement of learning from a huge mass
of data which cannot be processed in one go, the best
option is to divide the data into smaller manageable chunks
and learn from each of the chunks in an incremental way
i.e., the knowledge generated by learning from a chunk of
data is updated after learning from each of the subsequent

chunks. The process of learning in which the knowledge is
updated or derived in a phased manner without recalling
the original data corresponding to the knowledge already
obtained is referred to as Incremental Learning [1-2]. The
situation of learning could be identical in a distributed
environment where the data to be processed has to be
pooled in from different sources.
With the advancement in communication technology, the
dream of learning from the data which is physically

Int. J. Advanced Networking and Applications 582
Volume: 02, Issue: 02, Pages:581-596 (2010)

distributed over different locations has become a reality.
However considering the fact of the large size of data,
gathering all the data at a centralized location will be an
over burden on the communication channel and also
demands more resources at the centralized location to
process the huge mass of data. Moreover, the privacy and
security constraints also restrict the transfer of raw data
from a source to an intermediary or a centralized location.
For example, in the application of counting of electoral
votes, the ballot boxes are retained at physically
distributed locations and learning from the data available
in ballot boxes is done at their respective source locations;
after learning, the obtained knowledge from the learnt
concepts is transmitted to the centralized location. Thus it
is sensible to process the data at source and use
communication channel to transmit the knowledge. For the
compatibility of knowledge resulting from different
sources of data, it is advisable to have identical learning
mechanisms at each of the multiple locations.
While learning incrementally, if the learning mechanisms
employed are data sequence sensitive, different ways of
merging the generated knowledge will lead to different
results and literature has termed it as the problem of order
effect [1]. The other aspect of the order effect is that the
knowledge packets generated at the intermittent stages
instead of showing the trend would deviate at earlier
levels. The conventional order effect problem is overcome
by the merging policy adopted. It is pointed out in [1] that
there exists at least three levels at which the order effects
can occur - (i) at the level of attributes (ii) at the level of
instances and (iii) at the level of concepts.
During incremental learning with multi-dimensional data,
if all the dimensions or features of the data are not
available, then learning has to begin with the available
features and should be reviewed as and when the new
features become available (of course without reusing the
already processed features). Different orders of processing
of the features will lead to different results. This
phenomenon is referred to as order effect at the level of
attributes. Learning with the available samples or rows of
the data (all attributes of each row), will lead to order
effect at the level of instances. Similarly, when learning
has to be done with the available concepts, which are the
statistical summaries of the data chunks, then different
orders of processing the concepts will lead to order effect
at the level of concepts. This is the one which is
considered in this paper.
The learning mechanism employed in this research is
clustering, which is an unsupervised classification method
that aims to partition the dataset into subsets called clusters
such that the degree of similarity is high among members
of the same cluster and low between the members
belonging to different clusters. Each cluster is viewed as a
concept. A concept is considered as knowledge which is
described by a set of variables and is being referred to as a
knowledge packet (KP) in this paper.
Talavera et al [3] made an attempt to avoid ordering effect
at the level of instances. Here the task is to classify the
instances into various classes. The learning mechanism

employed is clustering. To avoid order effects, whenever
an instance cannot be added to a cluster, it is stored in a
buffer with a hope of getting utilized in future progression.
When the size of the buffer reaches a user defined
threshold, the instances present in the buffer are
reprocessed. By reprocessing the data, though the system
no longer remains fully incremental, we can still say that
only a limited data has been reprocessed for the sake of
avoiding order effects. The process of buffering is similar
to the idea of partial instance memory proposed by
Michalski et al [4]. A similar strategy to learn from
temporal data has been carried out by us in [5].It has been
shown that the optimal size of the buffer cannot exceed
10% of the dataset. In another study [6], we have also
shown that a fairly good learning is possible even by
discarding the buffered data, which leads to the idea of
zero instance memory learning [4].
Nicola et al [7] have also made an attempt to avoid order
effects at the level of instances where the task is to learn a
concept definition from instances. To avoid order effect,
backtracking mechanism has been employed to go back to
a previous knowledge level whenever a dead end is
reached. Going back to a previous knowledge level implies
maintaining more than one set of knowledge which
violates the basic principles of incremental learning [1].
Fisher in [8], made an attempt to avoid order effects at the
level of concepts using a classification tree (CT). Each
node in the CT is a probabilistic concept that represents an
object of a class. It is not mentioned explicitly as to how
these concepts were learnt. As and when a new concept
becomes available, it is placed into each of the existing
nodes of the CT apart from creating a new node to place
the incoming concept. Then an evaluation is performed to
find a best partition. The node that results in the best
partition is allowed to host the new concept. As pointed
out by the authors, this process is very sensitive to the
ordering of the initial input. Hence, whenever a concept is
inserted into a CT, the node which has accepted the new
concept is checked for merging and splitting. It is observed
that since merging and splitting has inverse relation, the
order effects could be eliminated automatically.
In [8], rather than placing the new concept in each of the
existing nodes of concepts and checking each of the
concepts for a best partition, had the similarity measure
between the new concept and the existing concepts is
obtained and the new concept is placed into the concept
with nearest distance, the computational efforts could have
got reduced. By doing so, even when more than one
concept is available for insertion, we can easily find the
concept to be inserted first and there by the ordering
effects can be avoided. Further in [8], since it is unclear as
to how the concepts are being represented, we may have to
explore ways of standardizing the representation of
concepts so that the distance between concepts can be
computed easily.
In [9], a framework for learning from the data which is
distributed over multiple sites has been proposed. It has
been wisely advocated to extract the knowledge of the data
at the respective sites and transmit the knowledge to a

Int. J. Advanced Networking and Applications 583
Volume: 02, Issue: 02, Pages:581-596 (2010)

centralized location for further processing. In this case,
knowledge from different sources is gathered at a
centralized location and is some how fused rather than
fusing them in a systematic way. For online monitoring of
the progression of learning apart from achieving the
computational ease and efficacy, the knowledge at the
centralized location should have been be fused
incrementally to get the overall knowledge. Since different
orders of fusing the knowledge become possible, there is a
strong need to engineer the fusion process which should
avoid order effects. Since incremental learners tend to
favor the local optimum solution compared to global one,
there should be some mechanism to insert global
knowledge at each step of learning into the incremental
learners.
In [10], an attempt is made to uncover the reasons behind
order effects in a supervised environment. It is shown that
optimality and storage criteria are sufficient for ensuring
order independence. It has been pointed out that achieving
order independence in unsupervised learning scenario
would be interesting and represents a choice for future
work.
The work of Christoppe [2] lists many problems associated
with incremental learning. Of the several problems,
achieving order independence is of greater relevance, but
has remained largely open [1-2], [10-12]. For example, to
quote from Langley [1], the field of incremental learning
needs better measures for detecting order effects in
incremental learners. Further, it is pointed out in [1] that
while learning incrementally, different samples or
attributes or concepts may lead the learner down quite
different paths, and later experiences may not be sufficient
to counteract them. Hence there is a strong need to find
ways to avoid order effects in incremental learning.
Though the work in [7] concentrates on avoiding order
effects at the level of instances, it has been pointed out that
the problem of order effects at the level of concepts
requires further analysis and represents a future work
issue.
From the above discussions, it is clear that avoiding order
effects in incremental learning especially with respect to
concepts has not been engineered to perfection till date
and needs a thorough analysis. Further, the exact definition
of a concept is not explicitly premeditated. In this research,
we concentrate on (i) defining the concept explicitly
(ii) identifying the challenges involved in avoiding order
effects at the level of concepts and (iii) providing a robust
solution to avoid order effects - especially with respect to
the concepts that were generated at different sites and have
to be transmitted to a centralized or an intermediary
location for incremental augmentation.
Since DBSCAN (Density Based Spatial Clustering of
Applications with Noise) [13] algorithm is insensitive to
the order of presentation of data samples (i.e., irrespective
of the order of presentation of data samples the resulting
clusters will not change), we would like to employ it for
the purpose of learning at all the sites of a distributed
environment. This overcomes one aspect of order effect.
To overcome the other aspect of order effect, two ways of

inserting the global knowledge into incremental learning
process is proposed. These two ways differ only in the way
the batches are combined and are termed as Kruskal�s like
and Prim�s like methods. These names are in line with the
methods proposed by Joseph Kruskal and Robert C. Prim
for the selection of a node to be inserted during the
construction of a minimum spanning tree (mst) from a
given weighted graph [14]. The data samples which are
considered as outliers during the knowledge generation
process at each of the sites were considered as single
element clusters of that site. For the sake of simplicity, we
presume that the data available at each of the sites can be
easily processed in one step without the obligation of
splitting, as order effects may creep in even at this level.
Since histograms have the generic ability to characterize
any type of data and since the frequency distribution of
elements is conveniently recorded in histograms, the
knowledge of each of the obtained clusters is represented
using histograms. Further, since the memory requirement
of histograms depends on the number of bins, the
histograms are transformed into first order regression lines
which require only two variables to store slope and
intercept.

II. THE PROPOSED APPROACH
In a distributed environment, as it is sensible and desirable
to transmit the knowledge of each of the learnt concepts, it
has become necessary to sort out a set of variables which
portray a concept proficiently.
2.1 Statistical variables to portray a concept
We have identified the following set of variables as a
sufficient requisite to describe a concept.

(i) Number of elements in each cluster. We
denote it by �n�. This could be useful in
keeping the concepts in normalized form and
can reflect the density as well.

(ii) Centroid is the most commonly used
statistical variable to describe the center of a
cluster, assuming that clusters are generally
spherical in structure. Centroid is the
arithmetic mean of all the elements in that
cluster. We denote the centroid by �µ� and is
given by

1

1 n

i
i

x
n

µ
=

= � --- (1)

(iii) Standard deviation is the measure of
distribution of objects around the centroid
and is very much useful in finding the density
of the cluster. We denote the standard
deviation by �σ� and is given by

 ()2

1

1
1

n

i
i

x
n

σ µ
=

� �= −� �−� �
� ---- (2)

(iv) Frequency distribution of elements can be
easily recorded in histograms and only
histograms have the generic ability to
characterize most of the symbolic and

Int. J. Advanced Networking and Applications 584
Volume: 02, Issue: 02, Pages:581-596 (2010)

conventional data types. Hence we have
considered histogram as a better
representative of a concept. Though we
require few bins to store a histogram, the
memory required to store bins is far less than
the actual data itself. However, as the number
of bins of histogram varies, the memory
requirement will also change. To keep the
memory requirement stable, we have decided
to utilize the idea of transforming the
histogram into a regression line proposed in
[15, 16]. Such a regression line requires
memory to store only two variables (slope
and intercept) irrespective of the number of
bins of the histogram. We normally refer
histogram based regression line as a histo-
object.

Thus, in this research a concept is described as a set of
number of elements in each cluster; mean, standard
deviation and histogram based regression line of each of
the dimension of the cluster. As brought out earlier, we
refer to this set of variables as a knowledge packet (KP).
For example, for an m-dimensional data space, if the
current source or current batch [B]i shows up �k� clusters
[Cl1], [Cl2] � [Clk], then knowledge structure of [k]i is as
shown in Table I. Each row in Table I is a knowledge
packet (KP).
Construction of histogram requires input about the number
of bins and the bin width. In this research, through out the
distributed sources, the number of bins is simply fixed at
10 and the bin width is decided by the prior knowledge [4]
about the dataset. Since change in number of bins and the
bin width may affect the performance, we would like to
take up this issue in a separate study. However, as
histograms are ultimately converted to cumulative
histograms before converting them to regression lines, this
may not pose a threat.

For the sake of completeness, a glimpse at the conversion
of histogram to regression line through an intermediate
stage of constructing its cumulative histogram as proposed
in [15, 16] is reviewed here.

Consider a histogram H with 10 bins; H = {b1, b2, b3, b4,
b5, b6, b7, b8, b9, b10} where bi is the frequency count of
the bin centered at Ci. For example, the corresponding
histogram for the data say A = {10 30 40 50 40 30 20 20
30 10} is as shown in Fig 1.
A cumulative frequency distribution is computed for each
of these 10 centers resulting in the cumulative histogram
(CH); CH = {ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8, ch9, ch10}
where chi = sum (chk) for k = 0 to i; for the histogram of
Fig 1, CH becomes {10 40 80 130 170 200 220 240 270
280} and the cumulative histogram is as shown in Fig 2.
CH is then normalized by dividing chi for i = 1 to 10 by
ch10. Now 10 points are marked on the top of each bin in
the CH corresponding to the bin centers and a first order
polynomial is fitted across these 10 points to obtain
regression line with yi ranging between 0 and 1 and xi�s

range is decided by the minimum and maximum co-
efficient values at a particular scale. The regression line
fitting is done as shown in Fig 3. Even a small change in
histogram is easily reflected in the cumulative histogram
which changes the slope of the line and hence there is no
chance of getting same slope for two different histograms.

2.2 Distance between concepts
If the concepts are of irregular shape (for example chain
like), it may so happen that the Centroid may not lie within
the boundaries of the concept itself and the concepts with
nearest Centroids may not be the nearest concepts with
respect to the internal distribution of elements within the
concepts. Hence as we have a much stronger variable in
the form of a histogram based regression line (histo-object)
which also records the distribution of objects within a
concept, it is sensible to find distance between the
regression lines. For this purpose, we would like to utilize
a specially designed distance measure for histo-objects
called regression distance measure [15, 16]. Since the
presence of histogram based regression line nullifies the
requirement of µ and σ, we have retained them for
deciding the merging criteria of concepts.
For the sake of clarity, the regression based distance
measure [15, 16] is summarized in fig 4. Upper part of the
fig 4 gives the different cases of regression lines that could
become possible and lower part gives the method of
finding distance between the regression lines by
calculating the area and behavior of the regression lines.

When a KP is described by multiple dimensions, each of
the dimensions of a KP is represented by a regression line.
In that case, the distance between the KPs is the average of
the distances between each of the dimensions.

2.3 Merging of nearest concepts
Once we can obtain distance between two concepts or
KPs, we can extend it to find distance between every pair
of the available KPs and can represent it as a distance
matrix. From the distance matrix, we can easily find the
nearest KPs. This helps to overcome the problem of order
effect.
Criteria for merging KPs can be obtained by checking the
density (ρ) of the proposed merge. The formula used to
calculate density should indicate the distribution of
objects in a cluster (which is a KP in our case) around its
centroid [17]. The density of a typical knowledge packet
�i� can be obtained by

(/)i i inρ σ= ---- (3)
where ni is the number of elements and σi is the
standard deviation of ith KP .

Merging of the nearest KPs could cause uneven
distribution of knowledge requiring the splitting of KP(s)
which requires access to the raw data. Since we have only
the knowledge about the raw data which is present at
different locations and since the idea is not carrying the
data along, there should be some mechanism at the time of
merging itself which can avoid splitting of the KPs at a

Int. J. Advanced Networking and Applications 585
Volume: 02, Issue: 02, Pages:581-596 (2010)

later stage. Hence we have applied the following criteria
for merging.
If the density of the proposed merge is greater than or
equal to the minimum of the existing densities of the KPs
under consideration, then the KPs are merged. Otherwise,
the process of merging is terminated. Further details on
merging have been made available in the following
sections.

III. THE NEW COMPUTATIONAL MODEL
The basic model for generation of knowledge of an ith
source or ith batch [B]i is:
[Concepts]i + [Outliers]i � [DATA]i ---- (4)
[Single element Concepts]i � [Outliers]i --- (5)
Model for obtaining the updated knowledge upon merging
of knowledge packets is:
If (1 1,n µ) is number of elements and mean of knowledge

packet 1, and (2 2,n µ) is the number of elements and mean
of knowledge packet 2, then upon merging of these two
knowledge packets we obtain (updated_n, updated_µ) as
the number of elements and the mean of the updated
knowledge packet and is obtained as:

1 2_updated n n n= + --- (6)

updated_µ = 1 1 2 2

1 2

(*) (*)n n

n n

µ µ+

+

 
 
 

 --- (7)

In the same way, updated standard deviation
(_updated σ) is obtained as follows:

_updated σ = 2 2 2 2

1 1 1 2 2 2 1 2((*()) (*()))/()n d n d n nσ σ+ + + + --- (8)
Where,

2 2

1 1(_)d updatedµ µ= − ;
2 2

2 2(_)d updatedµ µ= − ;
Similarly, updated density can be calculated as

_
_

_

updated n
updated

updated
ρ

σ
= --- (9)

Similarly, If (1 1 1, ,n s i) is the number of elements, slope
and intercept of the regression line of knowledge packet 1,
and (2 2 2, ,n s i) is the number of elements, slope and
intercept of the regression line of knowledge packet 2, then
upon merging of these two knowledge packets we get
(updated_n, updated_s, updated_i) as the number of
elements, slope and intercept respectively of the updated
knowledge packet and is obtained as follows:

1 2_updated n n n= + ; (Same as Eq. 6 above)

1 1 2 2 1 2_ ((*) (*)) / ()updated s n s n s n n= + + --- (10)

1 1 2 2 1 2_ ((*) (*)) / ()updated i n i n i n n= + + --- (11)

Proofs for these formulations need not be elaborated here
as they are well established results in statistics [17]. It is to
be noted that in our earlier work [5, 6] on incremental

learning in the context of data arriving temporally, we have
used a similar model to update the existing knowledge with
the knowledge derived from the new chunk of incoming
data. However, with the data arriving temporally, one shall
not be pressed with order effect.
Basic model to check the feasibility of merging of the
nearest two knowledge packets:
Let 1ρ and 2ρ are the densities of the knowledge packets to
be merged and _updated ρ is the density of the proposed
updated knowledge packet, which can be computed as per
eq. (9). If the _updated ρ is greater than or equal to

1, 2min()ρ ρ then merging of knowledge packets is allowed.
It should be observed that, a suitable strategy is presented
for merging the KPs, but not for splitting a KP for two
reasons. (i) Since merging operation is prevented under the
unfavorable conditions the question of subsequent splitting
does not arise and (ii) splitting of KP requires access to the
raw data which has been assumed to be inaccessible. The
alternative for access to raw data could be re-constructing
the data with the available knowledge, which is
discouraged due to computational over burden [10].
The simplest way to avoid order effects is to find the
distance between all the available KPs and merge the
nearest KPs. Upon every merge, the distance between the
remaining KPs has to be re-computed. Undoubtedly, the
number of KPs are very much less than the actual data
itself. However, if we could think of a heuristic which can
reduce the complexity of constructing the distance matrix,
it saves lot of space and time. Here we present a possible
heuristic which significantly reduces the resources required
for computation.
Model for generating the knowledge of a source or a
batch:
Summation of all the KPs of a source or a batch is referred
to as batch knowledge.
Number of elements that have contributed to the

knowledge of a batch is given by
1

j

i
i

n
=
∑ , where j is number

of KPs and ni is the number of elements of the KP �i�. µ
and σ can be calculated by repeatedly executing the eq. (7)
and eq. (8) till all the KPs of the batch are processed.
Given two histograms H1 and H2 defined over a same
variable �i� with �N� number of bins, the basic addition
operation can be defined as:

()
1

1 2 1() 2()
N

i
H H H i H i

=
+ +=∑ --- (12)

The above model of addition of two histograms can be
extended for addition of all histograms of a batch. The
resulting histogram can be transformed into a regression
line as explained above to generate the batch knowledge.
Alternatively, regression line of each batch can also be
constructed by repeated addition of the regression lines of
each of the KPs of that batch using eq. (10) and eq.(11).
To speed up the process, knowledge generation of each
batch could be done in parallel. Then the distance between

Int. J. Advanced Networking and Applications 586
Volume: 02, Issue: 02, Pages:581-596 (2010)

the batch knowledge of each of the batches could be
obtained as we obtained the distance between KPs. Then
the nearest two batches to be selected for merging. This
reduces the search space significantly.
Alternatively, we can obtain the batch-knowledge from all
the elements of a batch before applying the learning
mechanism at the source itself and send the batch-
knowledge along with the KPs of the batch.
Basic model for merging of knowledge packets of the
nearest two batches:
Let us assume that out of the available batches of data, the
nearest two batches are Bi and Bj and the number of
knowledge packets (k) in each batch could be different.

{ }1 2 3, , ...i i i i ipB k k k k= --- (13)

{ }1 2 3, , ...j j j j jqB k k k k= --- (14)

Let us assume that the knowledge packets of Bi are to be
moved to Bj during the process of merging.
Let us assume that 1ik is nearest to 3jk and merging is

agreed, then 3jk grows because of the merger of 1ik in it
and its distance with the other packets within Bj could get
reduced inducing further merging with Bj. The same
process could happen in Bj also and the number of packets
gets reduced after every merging. If merging is not agreed,

1ik is moved to Bj as 1jqk + . In either case, distance matrix
of Bi and Bj has to be dynamically updated. Once all the
packets of Bi are moved to Bj, number of batches gets
reduced and the distance between the batches to be
recomputed to find the next nearest two batches.

IV. ALGORITHM
A simple algorithmic form of the main procedure of
kruskal�s like method [14] of merging the KPs to avoid
order effects is provided in the following section.
Algorithm: Avoiding concept level order effects during
incremental learning through clustering in a distributed
environment

1) Apply DBSCAN [13] clustering algorithm on the
data available at each source. Extract knowledge
of each of the resulting clusters, which is in the
form of KPs and send it to a third party location.
Also send the knowledge of the entire source
which can be termed as batch knowledge.

2) At the third party location,
while (no-of-batches > 1)

Find distance_between_batches using the batch-
knowledge and pick the nearest batches;
Among the nearest batches, identify one of the
batch as source_batch and the
other as destination_batch;
while (no-of-KPs of the destination-batch > 0)
 Find distance between source-batch KPs and
 destionation-batch KPs
 Identify the nearest KPs;

 if (the nearest KPs can be merged as per the
 specified condition)

 Merge;
 Check for induced merging;
 while (no-of-KPs of the source-batch > 1)
 Find distance between the grown-up KP
 and the existing KPs of the

source_batch;
 if (induced merging is possible as per the
 specified condition),

 Merge;
 else
 break; /* go out of the present while loop

*/
 end /* end of if-else */
 end /* end of while loop */
 else
 break; /* go out of the while loop */
 end /* end of if-else */

 end /* end of while loop */
 Update the knowledge of source-batch;
 Delete the knowledge of destination-batch;
 Reduce the no-of-batches by one;
 end /* end of outermost while loop */

3) stop
The other method differs only in the way the sources or
batches are merged. After merging the nearest two batches
to get a combined batch, distance between the combined
batch and the remaining batches is computed. The batch
which is nearest to the combined batch is merged next. As
brought out in section 1, this method of merging can be
seen as Prim�s like and the earlier one as Kruskal�s like
methods [14].

4.1 Complexity analysis

(i) Time complexity of DBSCAN clustering
mechanism is O(nlogn) [20] [21] where �n� is
the number of samples in each chunk; If
there are �k� number of sources, then the time
complexity becomes k * (nlogn);

(ii) Extracting knowledge of each cluster:
If there are m clusters in a source and if there
are d dimensions of each cluster, then for
extracting knowledge of each source, the
time required is O(md);
For k number of batches, the time required to
extract knowledge is k * (md)

(iii) Finding distance between knowledge packets
 (KPs):

(a) If there are m1 KPs obtained from one
batch and if m2 KPs are obtained from
another batch, and if m1 is almost equal
to m2 time required to find distance
between them is m1 (m1 -1)/2;

(b) Re-computation of the distance matrix
has to be done with a merge of each KP.
At each step a KP gets reduced by one.

Int. J. Advanced Networking and Applications 587
Volume: 02, Issue: 02, Pages:581-596 (2010)

In the worst case, this procedure has to
be repeated m1 (m1-1)/2 times.

The Overall complexity is:
[k * (nlogn)] + [k * (md)] + [m1 (m1-1)/2] * [m1 (m1-1)/2];
� O (m4n);
It should be noted that m is the number of knowledge
packets and since m n� , we can argue that m is always
bound by a constant. In practical scenarios it is also true
that one could be interested in designing predefined
number of KPs only. Thus the above expression may be
simplified to O (λ n) where λ is in terms of m.

4.2 An illustrative example

A synthetic dataset in a 2D space has been used for the
sake of clear understanding of the proposed method
although the method can be applied to any finite number of
dimensions as can be seen in the experimentation part in
section V.
The synthetic dataset is of 20,000 points in a 2D space
distributed over five classes of unit radius and is as shown
in Fig 5. A similar dataset has been used by Liaden
O�Collagahan et al [22] to simulate a stream of data for the
study of a clustering algorithm.
The initial dataset of 20,000 points is divided into ten
batches by a random selection of samples from the initial
dataset. Each batch of the thus obtained batches of data is
assumed to be available at a different source or different
location.
The DBSCAN parameters Eps and Minpts were set to 0.15
and 10 respectively. These values were obtained through
trial and error mechanism. Upon executing the DBSCAN
procedure on the batches of data at their respective
locations, we obtained few clusters and outliers. As
brought out earlier in section 1, the outliers of each stage
are considered as single element clusters of that stage. The
total number of clusters of each stage is as shown in the
second column of Table II. The extracted knowledge
(batch-knowledge) of each of the complete batches of data
is as shown in the subsequent columns of Table II.
Distance between the KPs of these batches is obtained
using regression based distance measure [15, 16]. For clear
understanding of the distances between each of the batches
of data, the obtained distances are presented in the form of
a matrix in Table III.
Based on the distance matrix the nearest batches (here B5
and B6) are selected for merging, there by reducing the
requirement of huge computational resources which was
required had we considered finding distance between all
the KPs (here 237 in total) available at the centralized
location.
As can be seen from Table III, B5 and B6 are the two
nearest batches. After merging of KPs between B5 and B6,
some of the knowledge packets of B6 have got merged with
the KPs of B5 and the remaining KPs have remained as
additional KPs of B5 making B6 empty. As shown in Table
III, B5 has 22 KPs and B6 has 14 KPs. Had none of the
KPs of B6 got merged with the KPs of B5, it would have

resulted in 36 (22+14) KPs in the source batch B5. The
merging and induced merging brought down the number of
KPs to 29 in B5.The overall procedure reduces the number
of batches by one and the distance matrix is recomputed to
find the next nearest batches. Table IV gives the sequence
of merging the batches and the number of knowledge
packets at each stage.
In Table IV, first column of each stage indicates the
number of KPs of a batch prior to merging and second
column indicates number of KPs of a batch after merging.
Highlighted numerals indicate the KPs considered for
merging at that stage. Highlighted and italicized numerals
indicate the updated KPs of that batch because of merge.
Highlighted, italicized and struck-off numerals indicate the
deletion of KPs of the merged batch. After each merge (i)
knowledge of the grownup batch is updated and the
knowledge with respect to the merged batch is deleted and
(ii) distance between batches is re-computed and the next
nearest batches are selected for merging. This method of
merging can be termed as Kruskal�s like method of
merging. Instead of re-computing the distance matrix
between batches, if the distance between the grownup
batch and remaining batches is obtained, and if the nearest
batch is merged with the grownup batch, the resulting
sequence of merging can be viewed as Prim�s like
merging. Table V gives the sequence of merging of
batches in Prim�s like method. The description of Table V
is similar to that of Table IV.
Since the algorithm employed for learning is insensitive to
the order of presentation of data samples, we could not
find any difference in the results obtained by Kruskal�s
like and Prim�s like methods of merging. However, one
can see the order effect through optimality at each stage, as
it has been pointed out in [10], that optimality and storage
criteria are sufficient for ensuring order independence. In
the following paragraph, we can examine these issues from
the results shown in Tables IV and V.
If m and n are the number of KPs of two batches to be
merged, an ineffective combination of two batches is the
one in which the resulting number of KPs is equal
to ()m n+ . A good combination should show the number
of KPs to be less than ()m n+ . A very good combination
should be equal to (,)smaller m n ; further it should be less
than the (,)smaller m n . To measure the optimality, the
percentage of reduction at each stage is calculated. For a
comparative analysis with the proposed methods of
merging the batch-knowledge, we have merged the batches
at random and the percentage of reduction is shown in Fig
6 and Fig 7.
It is clear from the graph shown in Fig 6 that the
percentage of reduction in the KPs in the initial stages of
Kruskal�s like merging is more when compared to random
merging. For random merging, percentage of reduction is
higher at the last stage. Further it is also clear that the
stability in reduction has reached at a stage prior to the last
stage in Kruskal�s like merging. In fact, we would have
obtained the stability at a much earlier stage; however
because of the constraint of avoiding over merging, we

Int. J. Advanced Networking and Applications 588
Volume: 02, Issue: 02, Pages:581-596 (2010)

could see the stability at a later stage. Obtaining stability in
earlier stages is quite significant in this case as we can
terminate the process of learning and can save lot of time
required to process the remaining batches.
A Similar comparison between Prim�s like method of
merging and the random merging is depicted in the graph
shown in Fig 7. The graph shown in Fig 8, shows the
comparison between Kruskal�s like and Prim�s like
methods of merging.
The advantages of the above methods of merging are (i)
the computational resources required for merging the
nearest batches is very less when compared with
processing the complete set of KPs of all the batches at
once (ii) reduction of KPs at the very beginning implies
reduction in search space and the reduction of time
required in the subsequent stages of merging (iii) process
of assimilation of knowledge packets can be terminated
once we notice that there is no change in the knowledge by
the addition of subsequent stages of merging (iv)
prediction of final knowledge could become possible by
analyzing the trend at each stage of merging (vi) if any one
is interested in the knowledge of the intermediate stages,
most accurate intermediate knowledge can be obtained.
We are exploring further reduction of computational time
by employing parallel processing.
Finally repeated merging of the nearest KPs gave five KPs.
The actual values of each of the five initial KPs and the
incrementally generated KPs and their difference in
percentage are as shown in Table VI.
It is also to be noted that since there is no difference in
actual and the obtained values of the parameter n of each
of the KPs, it has been omitted from Table VI.

V. EXPERIMENTATION
We have conducted experiments on two bench mark
datasets � (i) 700X3 dataset [14] which is a dataset of three
dimensions with 700 samples distributed over five classes
and (ii) Iris [23] which is a four dimensional dataset of 150
samples distributed over three classes.

5.1 700X3 dataset [14]

This dataset has 700 elements with 3 features. There are
five classes with 140 samples in each class. First 140
samples belong to class 1, next 140 belong to class 2 and
so on. To get the clear separation of classes, all the three
features are mandatory. This dataset has been used as a
regression line symbolic sample set and has been
established that the first two principle components are
good enough to classify this symbolic dataset [14]. As
done in section 4, for the sake of simulating the distributed
data, we have divided the original dataset into ten batches
of 70 samples each by a random selection of samples and
presumed that each batch of data is available at a different
location. Knowledge of each batch of data is extracted to
obtain the batch-knowledge of the respective batches.
Learning is performed on each batch of data by setting the
DBSCAN [13] parameters MinPts and Eps to 2 and 6

respectively. The number of clusters obtained by learning
from each batch of data is shown in Table VII.
Knowledge of the resulting clusters is extracted to obtain
the corresponding KPs. Distance between the batch-
knowledge is obtained to find the nearest batches. The
batches were merged as per the proposed Kruskal�s like
and Prim�s like methods of merging. For a comparative
analysis, batches were also merged randomly. The
obtained comparative percentage of reduction at each stage
is shown in Fig 9 to Fig 11.
From the graphs, it is very clear that the process of
learning could be terminated after stage 6 in both Prim�s
like as well as in Kruskal�s like merging; where as in
random merging stability has reached only at stage 9.

5.2 Iris data [23]

The standard iris dataset [23] has150 points in a 4-
dimensional space. First 50 samples belong to class 1; the
second 50 belong to class 2 and the third 50 belong to
class 3; Class 1 is clearly separable from class 2 and 3,
whereas class 2 and 3 are not separable. This dataset has
been used extensively to study the behavior of different
clustering algorithms.
As informed earlier, the given dataset is divided into 6
batches of 25 elements each by selecting the samples
randomly. With the DBSCAN parameters MinPts set to 2,
Eps set to 1.4, the obtained clusters from each batch are as
shown in Table VIII.
From the graphs shown in Fig 11 to Fig 14, it is clear that
the percentage of reduction in KPs of the proposed
methods dies down with the progression of learning,
making way to stop the learning process.

VI. DISCUSSIONS
In our approach, we transmit only the knowledge and
hence applicable to applications which demands privacy
preserving. The outlier data which we transmit as a KP
will not reveal the details of the data and in the worst case
we can claim that the privacy of such data is unwarranted.
Our approach is similar to that of Diona et al [9] which
preclude the transmission of data and allows the
transmission of minimal sufficient statistics. However, the
minimal sufficient statistics transmitted in [9] is suitable
only to the Gaussian data where as the statistics that we
transmit is more robust and should be applicable any
distribution.
Our approach provide novel mechanisms to sequence the
process of merging the concepts arrived from different
sources where as in [9] the concepts are some how merged
without bothering about the order effects [1].

VII. CONCLUSION
As a first step in avoiding or minimizing the order effect at
the level of concepts during incremental learning, we have
employed a learning mechanism which is insensitive to the
order of presentation of data samples. The learning
mechanism employed is density based spatial clustering of

Int. J. Advanced Networking and Applications 589
Volume: 02, Issue: 02, Pages:581-596 (2010)

applications with noise (DBSCAN) and learning is
performed on the data which is physically distributed over
multiple locations. We advocate employing the learning
mechanism at the venue of the data and transmitting the
knowledge of each of the resulting clusters to a centralized
location for incremental augmentation. The knowledge of
each of the resulting clusters is being referred to as
concept or knowledge packet (KP). To strengthen the KPs,
a set of variables including a histogram based regression
line is employed in describing each of the KP. The data
available at each of the source is considered as one batch
of data and the knowledge of each of such batches of data
is referred to as batch-knowledge. To overcome the
tendency of incremental learning mechanisms in preferring
the local optimum in place of global one, distance between
the batch-knowledge of the available batches is computed
and at any stage the KPs of the nearest two batches are
allowed to participate in the incremental knowledge
generation process (Kruskal�s like merging). To avoid
order effect during the process of merging the KPs of the
nearest two batches, a novel regression based distance
measure is employed to find the distance between the KPs
and the nearest KPs are merged subject to the satisfaction
of certain merging conditions to avoid over merging. As an
alternative to the method of Kruskal�s like merging,
distance between the batch-knowledge of the grownup
batch with the batch-knowledge of the remaining batches
is computed and the nearest batch is merged with the
grown up batch (Prim�s like merging). For a clear
understanding, a synthetic dataset in a 2-D space is used
for the illustration of proposed methods. The proposed
methods are validated using two bench mark datasets. As a
future work, we would like to apply the said methods on
the datasets containing classes of variable density and
chain like structures, in which case we may have to find an
alternative to DBSCAN. We are also exploring the
possibility of applying these methods on remotely sensed
images in the framework of incremental learning.

REFERENCES
1 Langley P; Order Effects in Incremental Learning,

P. Reimann & H. Spada (Eds); Learning in Humans
and Machines: Towards an Interdisciplinary
Learning Science; (Elsevier, Amsterdam, 1995).

2 Christophe G.C, A Note on the Utility of
Incremental Learning, AI Communications, 13(4),
2000, 215-223.

3 Talavera L, Roure J, A buffering strategy to avoid
ordering effects in clustering, Proceedings of
ECML-98, 1998, 316-321

4 Maloof A.M & Michalski R.S; Incremental
Learning with partial instance memory, Artificial
Intelligence 154, 2004, 95-126.

5 P Nagabhushan, Syed Zakir Ali, Pradeep Kumar R,
A new cluster-histo-regression analysis for
incremental learning from temporal data chunks,
International Journal of Machine Intelligence 2010,

53-73
6 Syed Zakir Ali, P Nagabhushan, Pradeep Kumar R,

Regression based Incremental Learning through
Cluster Analysis of Temporal data, International
Conference on Data Mining (DMIN) 2009, 375-
381;

7 Nicola Di Mauro, Floriana Esposito, Stefano Ferilli
and M.A. Basile, Avoiding Order Effects in
Incremental learning, S. Badani and S. Manzoni
(Eds) LNAI 3673, Springer Verlag Berlin
Heidelberg 2005, 110-121

8 Fisher D.H, Knowledge acquisition via incremental
conceptual clustering, Machine Learning 2 (1987),
139-172

9 Doina Caragea, Adrian Silvescu, Vasant Honavar,
A Framework for learning from distributed data
using sufficient statistics and its application to
learning decision trees, International Journal of
Hybrid Intelligent Systems 1(2) 2004, 80-89.

10 Cornuejols A, �Getting Order Independence in
Incremental Learning�, in the Proceedings of the
Sixth European Conference in Machine Learning,
1993, 196-212,

11 Fisher D, L. Xu and N. Zard, �Ordering effects in
Clustering�, Proceedings of the Eighth International
Conference on Machine Learning, 1992.

12 J. MacGregor, The effects of order in learning
classifications by example: Heuristics for finding
the optimal order, Artificial Intelligence, 34, 1988,
361-370.

13 Martin Ester, Hans-Peter Kriegel, Jorg Sander,
Xiaowei Xu; A Density Based Algorithm for
Discovering Clusters in Large Databases with
Noise; Proceedings of the 2nd International
Conference on Knowledge Discovery and Data
Mining (KDD-96), 1996, 226-231.

14 Thomas H. Cormen, Charles E.Leiserson, Ronald
L. Rivest and Clifford Stein; Introduction to
Algorithms; (Third Edition; Eastern Economy
Edition, PHI, 2009), pp 631-633;

15 Pradeep Kumar R & P Nagabhushan, Multi
Resolution Knowledge Mining Using Wavelet
Transform Engineering Letters,
14:1;EL_14_1_30;2007,
www.engineeringletters.com/issues_v14/issue_1/
EL_14_1_30.pdf

16 Pradeep Kumar R, Wavelets for Knowledge
Mining in Multi Dimensional Generic Databases,
PhD Thesis of the University of Mysore, India,
2006.

17 Michael J Parik, Advanced Statistics from an
elementary point of view; (Elsevier Academic
Press; ISBN 13:978-0-12-088494-0, 2008)

18 Mohammad Ali Kadampur, Somayajulu D.V.L.N,
S.S.Shivaji Dhiraj and Shailesh G.P.Satyam,
Privacy preserving clustering by cluster bulging for
information sustenance, International Conference
on Information and Automation foe Sustainability
IEEE-ICIAFS-08, 240-246

Int. J. Advanced Networking and Applications 590
Volume: 02, Issue: 02, Pages:581-596 (2010)

19 Tsai-Hung Fan, Dennis K.J Lin, Kuang-Fu Cheng,
Regression Analysis for massive datasets, Data and
Knowledge Engineering 61 (2007) - Elsevier; 554-
562;

20 Yi-Pu Wu, Jin-Jiang Guo; and Xue-Jie Zhang; A
Linear DBSCAN Algorithm based on LSH;
International Conference on Machine Learning and
Cybernetics; Vol 5, Issue 19-22; 2007; 2608-2614;

21 Martin Ester, Hans-Peter Kriegel, Jorg Sander,
Michael Wimmer, Xiaowei X; Incremental
Clustering for Mining in a Data Warehousing
Environment; Proceedings of the 24th VLDB
conference New York, 1998, 323-333

22 Liaden O�Collagahan, Nina Mishra, Adam
Meyerson, Sudipto Guha and Rajiv Motwani;
Proceedings of the ICDE-2002; pp 685-694

23 S. Hettich, C.L. Blake and C.J. Merz, �UCI
Repository of Machine Learning Databases,�
Irvine, CA: University of California, Department of
Information and Computer Science, 1998

 Biographies and Photographs

 Prof. P Nagabhushan (BE-1980, M.Tech�
1983, PhD-1989) is Principal of
Bangalore Technological Institute and is a
Director of BESTAR. He is presently on
lien from the department of studies in
Computer Science, University of Mysore,

India. He is an active researcher in the 1983, PhD-1989) is
Principal of Bangalore Technological Institute and is a
Director of BESTAR. He is presently on lien from the
department of studies in Computer Science, University of
Mysore, India. He is an active researcher in the areas
pertaining to Pattern Recognition, Document Image
Processing, Symbolic Data Analysis and Data Mining. Till
now he has successfully supervised 18 PhD candidates. He
has over 400 publications in journals and conferences of
International repute. He has chaired several international
conferences. He is a visiting professor to USA, Japan and
France. He is a fellow of Institution of Engineers (FIE) and
Institution of Electronics and Telecommunication
Engineers (FIETE) India.

 Syed Zakir Ali is a research scholar at the
department of studies in Computer
Science. He completed his Bachelor�s
degree in Computer Science and
Engineering in 1993; and Master�s degree
in Computer Engineering in 1996 from

University of Mysore, India. He is an academician and a
budding researcher who has taught graduate level courses
at International levels for the past 14 years. His areas of
interest include Data Mining, Knowledge Management,
and Artificial Intelligence. He is a member of IEEE and
ISTE.

 Pradeep Kumar R (1977), has completed
his bachelors degree in Electrical
Engineering in 1999, Master�s degree in
Computer Science in 2001 and PhD in
Computer Science from University of
Mysore, India in 2006. He has been an

active researcher and an academician for the past 9 years.
His areas of interest include Data and Knowledge
Engineering, Image and video processing and
Computational Intelligence. He is a professional member
of ACM. He is presently managing the Amphisoft
Technologies Private Limited, Coimbatore. He has served
as Head of Training and R&D sections at TCS Chennai.

Int. J. Advanced Networking and Applications 591
Volume: 02, Issue: 02, Pages:581-596 (2010)

TABLES AND FIGURES

Table I: Knowledge parameters for Incremental learning

[B i] No. of
elements

f1 f2 � fm

[Cl1]
[Cl2]
�
[Clk]

n1
n2

�
nk

i 1
1µ

i 1
2µ

..
i 1

kµ

i 1
1σ

i 1
2σ

�
i 1

kσ

i L1
1

i L1
2

�
i Lk

1

i 2
1µ

i 2
2µ

..
i 2

kµ

i 2
1σ

i 2
2σ

�
i 2

kσ

i L2
1

i L2

2

�
i Lk

2

�
�
�
�

i
1
mµ

i
2
mµ

..
i m

kµ

i
1
mσ

i
2
mσ

�
i m

kσ

i
1
mL

i
2
mL

�
i m

kL

 Where, µ � Mean or Centroid; σ � Standard deviation;
 L � Regression Line in terms of slope and intercept; Cl � Cluster;

Table II: Knowledge of each batch

Batch
 No

No. of
clusters

X – (Dimension 1) Y – (Dimension 2)
Slope Intercept Slope Intercept

B1 16 0 1 0.1812 0.0994
B2 28 0.0814 0.7220 0.1776 0.1020
B3 28 0.1697 0.4042 0.1761 0.1094
B4 26 0.2378 0.1333 0.2056 0.0348
B5 22 0.2759 -0.0483 0.2652 -0.1156
B6 14 0.2996 -0.2204 0.2852 -0.1633
B7 25 0.2929 -0.3159 0.2298 -0.0242
B8 32 0.2655 -0.3336 0.1851 0.0837
B9 28 0.2112 -0.2995 0.1761 0.1094
B10 18 0.1397 -0.2132 0.1798 0.0982

Table III: Distance matrix for distance between batches

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
B1 0 4997.3 5000.6 5001.7 5002.4 5002.9 5003.0 5003.1 5003.8 5005.1
B2 4997.3 0 3.3114 4.4595 5.1805 5.6638 5.8312 5.9213 6.5307 7.8438
B3 5000.6 3.3114 0 1.1836 1.9049 2.3880 2.5552 2.6470 3.2194 4.5682
B4 5001.7 4.4595 1.1836 0 0.7214 1.2044 1.3717 1.7318 2.4474 3.7337
B5 5002.4 5.1805 1.9049 0.7214 0 0.4834 0.9460 1.5625 2.2785 3.5647
B6 5002.9 5.6638 2.3880 1.2044 0.4834 0 0.5946 1.2114 1.9273 3.2136
B7 5003.0 5.8312 2.5552 1.3717 0.9460 0.5946 0 0.6171 1.3327 2.6191
B8 5003.1 5.9213 2.6470 1.7318 1.5625 1.2114 0.6171 0 0.7170 2.0024
B9 5003.8 6.5307 3.2194 2.4474 2.2785 1.9273 1.3327 0.7170 0 1.3488
B1

0 5005.1 7.8438 4.5682 3.7337 3.5647 3.2136 2.6191 2.0024 1.3488 0

Table IV: Merging the nearest batches (Kruskal’s like)

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
B1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 175
B2 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 159 159 159
B3 28 28 28 28 28 28 28 28 28 28 28 139 139 146 146 159
B4 26 26 26 26 26 55 55 55 55 120 120 139 18 146
B5 22 29 29 29 29 55 56 70 70 120 18 18
B6 14 29 25 56 56 56 28 70 18 18
B7 25 25 32 56 28 28 18 18
B8 32 32 28 28 18 18
B9 28 28 18 18
B10 18 18

Table V: Merging the nearest batches (Prim’s like)

Int. J. Advanced Networking and Applications 592
Volume: 02, Issue: 02, Pages:581-596 (2010)

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
B1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 175 175
B2 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 159 159 175
B3 28 28 28 28 28 28 28 28 28 28 28 139 139 146 146 159
B4 26 26 26 26 26 26 26 106 106 120 120 139 18 146
B5 22 29 29 49 49 80 80 106 28 120 18 18
B6 14 29 25 49 32 80 28 28 18 18
B7 25 25 32 56 28 28 18 18
B8 32 32 28 28 18 18
B9 28 28 18 18
B10 18 18

Table VI: Summary of deviation of Knowledge parameters

Knowledge
Parameter

Values

KP1
 f1 f2

KP2
 f1 f2

KP3
 f1 f2

KP4
 f1 f2

KP5
 f1 f2

µ Actual
Computed
Diff (%)

1.00
0.99
1.00

1.00
1.00
0.00

4.00
3.99
0.25

4.00
4.00
0.00

4.00
3.99
0.25

1.00
1.00
0.00

2.50
2.49
0.40

2.50
2.50
0.00

1.00
0.99
1.00

4.00
4.00
0.00

σ Actual
Computed
Diff (%)

0.50
0.50
0.00

0.50
0.50
0.00

0.50
0.50
0.00

0.50
0.50
0.00

0.50
0.49
2.00

0.50
0.50
0.00

0.50
0.49
2.00

0.50
0.50
0.00

0.50
0.49
2.00

0.50
0.50
0.00

L (slope) Actual
Computed
Diff (%)

0.14
0.14
0.00

0.14
0.14
0.00

0.21
0.21
0.00

0.14
0.14
0.00

0.21
0.21
0.00

0.14
0.14
0.00

0.28
0.28
0.00

0.28
0.28
0.00

0.14
0.14
0.00

0.21
0.21
0.00

L
(Intercept)

Actual
Computed
Diff (%)

0.49
0.49
0.00

0.49
0.49
0.00

-0.28
-0.28
0.00

-0.28
-0.28
0.00

-0.28
-0.28
0.00

0.49
0.49
0.00

-0.16
-0.16
0.00

-0.16
-0.16
0.00

0.49
0.49
0.00

-0.28
-0.28
0.00

Table VII Number of clusters obtained from each batch of 700X3 data

Batch
 No

No. of clusters

B1 06
B2 06
B3 05
B4 06
B5 05
B6 06
B7 05
B8 06
B9 06
B10 05

Table VIII Number of clusters obtained from each batch of Iris data

Batch No No. of clusters
B1 04
B2 04
B3 03
B4 03
B5 02
B6 03

Int. J. Advanced Networking and Applications 593
Volume: 02, Issue: 02, Pages:581-596 (2010)

Fig. 1 A Sample Histogram

Fig. 2 Cumulative Histogram for the histogram of Fig. 1

Fig. 3 Regression Line fitting on a normalized histogram

Fig. 4 Regression Distance Measure [15, 16]

Int. J. Advanced Networking and Applications 594
Volume: 02, Issue: 02, Pages:581-596 (2010)

Fig. 5 A synthetic dataset of 20,000 points in a 2D space distributed over 5 classes

Fig. 6 Percentage of reduction in KPs by Kruskal’s like method and random method of merging

Fig. 7 Percentage of reduction in KPs by Prim’s like method and random method of merging

Fig 8. Percentage of reduction in KPs by Prim’s like and Kruskal’s like methods of merging

Int. J. Advanced Networking and Applications 595
Volume: 02, Issue: 02, Pages:581-596 (2010)

Fig. 9 700X3 dataset’s percentage of reduction in KPs by Kruskal’s like method and random method

Fig. 10 700X3 dataset’s percentage of reduction in KPs by Prim’s like method and random method of merging

Fig. 11 700X3 dataset’s percentage of reduction in KPs by Prim’s like and Kruskal’s likemethod of merging

s

Int. J. Advanced Networking and Applications 596
Volume: 02, Issue: 02, Pages:581-596 (2010)

Fig. 12 Iris dataset’s percentage of reduction in KPs by Kruskal’s like method and Random method of merging

Fig. 13 Iris dataset’s percentage of reduction in KPs by Prim’s and Random method of merging

Fig. 14 Iris dataset’s percentage of reduction in KPs by Prim’s like and Kruskal’s like methods of merging

