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--------------------------------------------------------------------ABSTRACT------------------------------------------------------------- 
One of the ways of learning from the data which is physically distributed over multiple locations is to have a common 
learning mechanism at each of the source and knowledge of each of the learnt concepts has to be transmitted to a 
centralized location for assimilation. In this research, clustering is employed as a mechanism of learning and a cluster is 
viewed as a concept which is described by a set of variables. The set of variables which describes each of the clusters is 
being referred to as a knowledge packet (KP). As histograms have the generic ability to characterize any type of data, a 
histogram based regression line has been used as one of the variable to describe a KP. For online monitoring of the 
progression in learning apart from achieving computational ease and efficacy, the KPs at the centralized location are fused 
incrementally to get the overall knowledge. If learning mechanisms employed are data sequence sensitive, different 
combinations of merging the thus generated KPs may result in altogether a different overall knowledge. Further, the 
distance measure employed to find distance between the KPs in obtaining the optimal sequence of merging, may also 
result in a different overall knowledge. This phenomenon is being referred to as the problem of order effect. To minimize 
or avoid the order effect, a density based spatial clustering of applications with noise (DBSCAN) algorithm, which is 
insensitive to the order of presentation of data samples is used to learn from the data chunks and a novel methodology of 
finding the distance between the batches of data and there by finding the more optimal sequence of merging the KPs is 
presented. A specially designed distance measure for histogram based objects (histo-objects) is employed to find distance 
between the KPs and the nearest KPs are merged incrementally till certain conditions are satisfied. The proposed methods 
provide a robust mechanism of avoiding order effects. Since it is difficult to get the real distributed datasets, effectiveness 
of the proposed approaches is demonstrated with a carefully designed synthetic dataset. Some of the bench mark datasets 
were modified to simulate the distributed environment and experimentations with some of them show an accuracy of up to 
100%. 
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I. INTRODUCTION 

When there is requirement of learning from a huge mass 
of data which cannot be processed in one go, the best 
option is to divide the data into smaller manageable chunks 
and learn from each of the chunks in an incremental way 
i.e., the knowledge generated by learning from a chunk of 
data is updated after learning from each of the subsequent 

chunks. The process of learning in which the knowledge is 
updated or derived in a phased manner without recalling 
the original data corresponding to the knowledge already 
obtained is referred to as Incremental Learning [1-2]. The 
situation of learning could be identical in a distributed 
environment where the data to be processed has to be 
pooled in from different sources. 
With the advancement in communication technology, the 
dream of learning from the data which is physically 
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distributed over different locations has become a reality. 
However considering the fact of the large size of data, 
gathering all the data at a centralized location will be an 
over burden on the communication channel and also 
demands more resources at the centralized location to 
process the huge mass of data. Moreover, the privacy and 
security constraints also restrict the transfer of raw data 
from a source to an intermediary or a centralized location. 
For example, in the application of counting of electoral 
votes, the ballot boxes are retained at physically 
distributed locations and learning from the data available 
in ballot boxes is done at their respective source locations; 
after learning, the obtained knowledge from the learnt 
concepts is transmitted to the centralized location. Thus it 
is sensible to process the data at source and use 
communication channel to transmit the knowledge. For the 
compatibility of knowledge resulting from different 
sources of data, it is advisable to have identical learning 
mechanisms at each of the multiple locations. 
While learning incrementally, if the learning mechanisms 
employed are data sequence sensitive, different ways of 
merging the generated knowledge will lead to different 
results and literature has termed it as the problem of order 
effect [1]. The other aspect of the order effect is that the 
knowledge packets generated at the intermittent stages 
instead of showing the trend would deviate at earlier 
levels. The conventional order effect problem is overcome 
by the merging policy adopted. It is pointed out in [1] that 
there exists at least three levels at which the order effects 
can occur - (i) at the level of attributes (ii) at the level of 
instances and (iii) at the level of concepts. 
During incremental learning with multi-dimensional data, 
if all the dimensions or features of the data are not 
available, then learning has to begin with the available 
features and should be reviewed as and when the new 
features become available (of course without reusing the 
already processed features). Different orders of processing 
of the features will lead to different results. This 
phenomenon is referred to as order effect at the level of 
attributes. Learning with the available samples or rows of 
the data (all attributes of each row), will lead to order 
effect at the level of instances. Similarly, when learning 
has to be done with the available concepts, which are the 
statistical summaries of the data chunks, then different 
orders of processing the concepts will lead to order effect 
at the level of concepts. This is the one which is 
considered in this paper. 
The learning mechanism employed in this research is 
clustering, which is an unsupervised classification method 
that aims to partition the dataset into subsets called clusters 
such that the degree of similarity is high among members 
of the same cluster and low between the members 
belonging to different clusters. Each cluster is viewed as a 
concept. A concept is considered as knowledge which is 
described by a set of variables and is being referred to as a 
knowledge packet (KP) in this paper. 
Talavera et al [3] made an attempt to avoid ordering effect 
at the level of instances. Here the task is to classify the 
instances into various classes. The learning mechanism 

employed is clustering. To avoid order effects, whenever 
an instance cannot be added to a cluster, it is stored in a 
buffer with a hope of getting utilized in future progression. 
When the size of the buffer reaches a user defined 
threshold, the instances present in the buffer are 
reprocessed. By reprocessing the data, though the system 
no longer remains fully incremental, we can still say that 
only a limited data has been reprocessed for the sake of 
avoiding order effects. The process of buffering is similar 
to the idea of partial instance memory proposed by 
Michalski et al [4]. A similar strategy to learn from 
temporal data has been carried out by us in [5].It has been 
shown that the optimal size of the buffer cannot exceed 
10% of the dataset. In another study [6], we have also 
shown that a fairly good learning is possible even by 
discarding the buffered data, which leads to the idea of 
zero instance memory learning [4]. 
Nicola et al [7] have also made an attempt to avoid order 
effects at the level of instances where the task is to learn a 
concept definition from instances. To avoid order effect, 
backtracking mechanism has been employed to go back to 
a previous knowledge level whenever a dead end is 
reached. Going back to a previous knowledge level implies 
maintaining more than one set of knowledge which 
violates the basic principles of incremental learning [1]. 
Fisher in [8], made an attempt to avoid order effects at the 
level of concepts using a classification tree (CT). Each 
node in the CT is a probabilistic concept that represents an 
object of a class. It is not mentioned explicitly as to how 
these concepts were learnt. As and when a new concept 
becomes available, it is placed into each of the existing 
nodes of the CT apart from creating a new node to place 
the incoming concept. Then an evaluation is performed to 
find a best partition. The node that results in the best 
partition is allowed to host the new concept. As pointed 
out by the authors, this process is very sensitive to the 
ordering of the initial input. Hence, whenever a concept is 
inserted into a CT, the node which has accepted the new 
concept is checked for merging and splitting. It is observed 
that since merging and splitting has inverse relation, the 
order effects could be eliminated automatically. 
In [8], rather than placing the new concept in each of the 
existing nodes of concepts and checking each of the 
concepts for a best partition, had the similarity measure 
between the new concept and the existing concepts is 
obtained and the new concept is placed into the concept 
with nearest distance, the computational efforts could have 
got reduced. By doing so, even when more than one 
concept is available for insertion, we can easily find the 
concept to be inserted first and there by the ordering 
effects can be avoided. Further in [8], since it is unclear as 
to how the concepts are being represented, we may have to 
explore ways of standardizing the representation of 
concepts so that the distance between concepts can be 
computed easily. 
In [9], a framework for learning from the data which is 
distributed over multiple sites has been proposed. It has 
been wisely advocated to extract the knowledge of the data 
at the respective sites and transmit the knowledge to a 
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centralized location for further processing. In this case, 
knowledge from different sources is gathered at a 
centralized location and is some how fused rather than 
fusing them in a systematic way. For online monitoring of 
the progression of learning apart from achieving the 
computational ease and efficacy, the knowledge at the 
centralized location should have been be fused 
incrementally to get the overall knowledge. Since different 
orders of fusing the knowledge become possible, there is a 
strong need to engineer the fusion process which should 
avoid order effects. Since incremental learners tend to 
favor the local optimum solution compared to global one, 
there should be some mechanism to insert global 
knowledge at each step of learning into the incremental 
learners. 
In [10], an attempt is made to uncover the reasons behind 
order effects in a supervised environment. It is shown that 
optimality and storage criteria are sufficient for ensuring 
order independence. It has been pointed out that achieving 
order independence in unsupervised learning scenario 
would be interesting and represents a choice for future 
work. 
The work of Christoppe [2] lists many problems associated 
with incremental learning. Of the several problems, 
achieving order independence is of greater relevance, but 
has remained largely open [1-2], [10-12]. For example, to 
quote from Langley [1], the field of incremental learning 
needs better measures for detecting order effects in 
incremental learners. Further, it is pointed out in [1] that 
while learning incrementally, different samples or 
attributes or concepts may lead the learner down quite 
different paths, and later experiences may not be sufficient 
to counteract them. Hence there is a strong need to find 
ways to avoid order effects in incremental learning. 
Though the work in [7] concentrates on avoiding order 
effects at the level of instances, it has been pointed out that 
the problem of order effects at the level of concepts 
requires further analysis and represents a future work 
issue. 
From the above discussions, it is clear that avoiding order 
effects in incremental learning especially with respect to 
concepts has not been engineered to perfection till date 
and needs a thorough analysis. Further, the exact definition 
of a concept is not explicitly premeditated. In this research, 
we concentrate on (i) defining the concept explicitly       
(ii) identifying the challenges involved in avoiding order 
effects at the level of concepts and (iii) providing a robust 
solution to avoid order effects - especially with respect to 
the concepts that were generated at different sites and have 
to be transmitted to a centralized or an intermediary 
location for incremental augmentation. 
Since DBSCAN (Density Based Spatial Clustering of 
Applications with Noise) [13] algorithm is insensitive to 
the order of presentation of data samples (i.e., irrespective 
of the order of presentation of data samples the resulting 
clusters will not change), we would like to employ it for 
the purpose of learning at all the sites of a distributed 
environment. This overcomes one aspect of order effect. 
To overcome the other aspect of order effect, two ways of 

inserting the global knowledge into incremental learning 
process is proposed. These two ways differ only in the way 
the batches are combined and are termed as Kruskal�s like 
and Prim�s like methods. These names are in line with the 
methods proposed by Joseph Kruskal and Robert C. Prim 
for the selection of a node to be inserted during the 
construction of a minimum spanning tree (mst) from a 
given weighted graph [14]. The data samples which are 
considered as outliers during the knowledge generation 
process at each of the sites were considered as single 
element clusters of that site. For the sake of simplicity, we 
presume that the data available at each of the sites can be 
easily processed in one step without the obligation of 
splitting, as order effects may creep in even at this level. 
Since histograms have the generic ability to characterize 
any type of data and since the frequency distribution of 
elements is conveniently recorded in histograms, the 
knowledge of each of the obtained clusters is represented 
using histograms. Further, since the memory requirement 
of histograms depends on the number of bins, the 
histograms are transformed into first order regression lines 
which require only two variables to store slope and 
intercept. 

II. THE PROPOSED APPROACH   
In a distributed environment, as it is sensible and desirable 
to transmit the knowledge of each of the learnt concepts, it 
has become necessary to sort out a set of variables which 
portray a concept proficiently. 
2.1 Statistical variables to portray a concept  
We have identified the following set of variables as a 
sufficient requisite to describe a concept.  

(i) Number of elements in each cluster. We 
denote it by �n�. This could be useful in 
keeping the concepts in normalized form and 
can reflect the density as well.  

(ii) Centroid is the most commonly used 
statistical variable to describe the center of a 
cluster, assuming that clusters are generally 
spherical in structure. Centroid is the 
arithmetic mean of all the elements in that 
cluster. We denote the centroid by �µ� and is 
given by  

                               
1

1 n

i
i

x
n

µ
=

= �    --- (1) 

(iii) Standard deviation is the measure of 
distribution of objects around the centroid 
and is very much useful in finding the density 
of the cluster. We denote the standard 
deviation by �σ� and is given by 

            ( )2

1

1
1

n

i
i

x
n

σ µ
=

� �= −� �−� �
�    ---- (2) 

(iv) Frequency distribution of elements can be 
easily recorded in histograms and only 
histograms have the generic ability to 
characterize most of the symbolic and 
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conventional data types. Hence we have 
considered histogram as a better 
representative of a concept. Though we 
require few bins to store a histogram, the 
memory required to store bins is far less than 
the actual data itself. However, as the number 
of bins of histogram varies, the memory 
requirement will also change. To keep the 
memory requirement stable, we have decided 
to utilize the idea of transforming the 
histogram into a regression line proposed in 
[15, 16].  Such a regression line requires 
memory to store only two variables (slope 
and intercept) irrespective of the number of 
bins of the histogram. We normally refer 
histogram based regression line as a histo-
object. 

Thus, in this research a concept is described as a set of 
number of elements in each cluster; mean, standard 
deviation and histogram based regression line of each of 
the dimension of the cluster. As brought out earlier, we 
refer to this set of variables as a knowledge packet (KP). 
For example, for an m-dimensional data space, if the 
current source or current batch [B]i shows up �k� clusters 
[Cl1], [Cl2] � [Clk], then knowledge structure of [k]i is as 
shown in Table I. Each row in Table I is a knowledge 
packet (KP). 
Construction of histogram requires input about the number 
of bins and the bin width. In this research, through out the 
distributed sources, the number of bins is simply fixed at 
10 and the bin width is decided by the prior knowledge [4] 
about the dataset. Since change in number of bins and the 
bin width may affect the performance, we would like to 
take up this issue in a separate study. However, as 
histograms are ultimately converted to cumulative 
histograms before converting them to regression lines, this 
may not pose a threat. 
 
For the sake of completeness, a glimpse at the conversion 
of histogram to regression line through an intermediate 
stage of constructing its cumulative histogram as proposed 
in [15, 16] is reviewed here. 
 
Consider a histogram H with 10 bins; H = {b1, b2, b3, b4, 
b5, b6, b7, b8, b9, b10} where bi is the frequency count of 
the bin centered at Ci. For example, the corresponding 
histogram for the data say A = {10 30 40 50 40 30 20 20 
30 10} is as shown in Fig 1. 
A cumulative frequency distribution is computed for each 
of these 10 centers resulting in the cumulative histogram 
(CH); CH = {ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8, ch9, ch10} 
where chi = sum (chk) for k = 0 to i; for the histogram of 
Fig 1, CH becomes {10 40 80 130 170 200 220 240 270 
280} and the cumulative histogram is as shown in Fig 2. 
CH is then normalized by dividing chi for i = 1 to 10 by 
ch10. Now 10 points are marked on the top of each bin in 
the CH corresponding to the bin centers and a first order 
polynomial is fitted across these 10 points to obtain 
regression line with yi ranging between 0 and 1 and xi�s 

range is decided by the minimum and maximum co-
efficient values at a particular scale. The regression line 
fitting is done as shown in Fig 3. Even a small change in 
histogram is easily reflected in the cumulative histogram 
which changes the slope of the line and hence there is no 
chance of getting same slope for two different histograms. 
 
2.2 Distance between concepts 
If the concepts are of irregular shape (for example chain 
like), it may so happen that the Centroid may not lie within 
the boundaries of the concept itself and the concepts with 
nearest Centroids may not be the nearest concepts with 
respect to the internal distribution of elements within the 
concepts. Hence as we have a much stronger variable in 
the form of a histogram based regression line (histo-object) 
which also records the distribution of objects within a 
concept, it is sensible to find distance between the 
regression lines. For this purpose, we would like to utilize 
a specially designed distance measure for histo-objects 
called regression distance measure [15, 16]. Since the 
presence of histogram based regression line nullifies the 
requirement of µ and σ, we have retained them for 
deciding the merging criteria of concepts. 
For the sake of clarity, the regression based distance 
measure [15, 16] is summarized in fig 4.  Upper part of the 
fig 4 gives the different cases of regression lines that could 
become possible and lower part gives the method of 
finding distance between the regression lines by 
calculating the area and behavior of the regression lines. 
 
When a KP is described by multiple dimensions, each of 
the dimensions of a KP is represented by a regression line. 
In that case, the distance between the KPs is the average of 
the distances between each of the dimensions. 
 
2.3 Merging of nearest concepts 
Once we can obtain distance between two concepts or 
KPs, we can extend it to find distance between every pair 
of the available KPs and can represent it as a distance 
matrix. From the distance matrix, we can easily find the 
nearest KPs. This helps to overcome the problem of order 
effect. 
Criteria for merging KPs can be obtained by checking the 
density (ρ) of the proposed merge. The formula used to 
calculate density should indicate the distribution of 
objects in a cluster (which is a KP in our case) around its 
centroid [17]. The density of a typical knowledge packet 
�i� can be obtained by 

( / )i i inρ σ=   ---- (3) 
where ni is the number of elements and σi is the 
standard deviation of ith KP . 

Merging of the nearest KPs could cause uneven 
distribution of knowledge requiring the splitting of KP(s) 
which requires access to the raw data. Since we have only 
the knowledge about the raw data which is present at 
different locations and since the idea is not carrying the 
data along, there should be some mechanism at the time of 
merging itself which can avoid splitting of the KPs at a 
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later stage.  Hence we have applied the following criteria 
for merging. 
If the density of the proposed merge is greater than or 
equal to the minimum of the existing densities of the KPs 
under consideration, then the KPs are merged. Otherwise, 
the process of merging is terminated. Further details on 
merging have been made available in the following 
sections. 

III. THE NEW COMPUTATIONAL MODEL 
The basic model for generation of knowledge of an ith 
source or ith batch [B]i is: 
[Concepts]i + [Outliers]i    �      [DATA]i         ---- (4) 
[Single element Concepts]i    �      [Outliers]i --- (5) 
Model for obtaining the updated knowledge upon merging 
of knowledge packets is: 
If ( 1 1,n µ ) is number of elements and mean of knowledge 

packet 1, and ( 2 2,n µ ) is the number of elements and mean 
of knowledge packet 2, then upon merging of these two 
knowledge packets we obtain (updated_n, updated_µ) as 
the number of elements and the mean of the updated 
knowledge packet and is obtained as: 

1 2_updated n n n= +    --- (6) 

updated_µ = 1 1 2 2

1 2

( * ) ( * )n n

n n

µ µ+

+

 
 
 

            --- (7) 

In the same way, updated standard deviation 
( _updated σ ) is obtained as follows: 

_updated σ  = 2 2 2 2

1 1 1 2 2 2 1 2(( *( )) ( *( )))/( )n d n d n nσ σ+ + + +    --- (8) 
Where, 

2 2

1 1( _ )d updatedµ µ= − ; 
2 2

2 2( _ )d updatedµ µ= − ; 
Similarly, updated density can be calculated as  

_
_

_

updated n
updated

updated
ρ

σ
=    --- (9) 

Similarly, If ( 1 1 1, ,n s i ) is the number of elements, slope 
and intercept of the regression line of knowledge packet 1, 
and ( 2 2 2, ,n s i ) is the number of elements, slope and 
intercept of the regression line of knowledge packet 2, then 
upon merging of these two knowledge packets we get 
(updated_n, updated_s, updated_i) as the number of 
elements, slope and intercept respectively of the updated 
knowledge packet and is obtained as follows: 

1 2_updated n n n= + ; (Same as Eq. 6 above) 

1 1 2 2 1 2_ (( * ) ( * )) / ( )updated s n s n s n n= + +   --- (10) 

1 1 2 2 1 2_ (( * ) ( * )) / ( )updated i n i n i n n= + +     --- (11) 

Proofs for these formulations need not be elaborated here 
as they are well established results in statistics [17]. It is to 
be noted that in our earlier work [5, 6] on incremental 

learning in the context of data arriving temporally, we have 
used a similar model to update the existing knowledge with 
the knowledge derived from the new chunk of incoming 
data. However, with the data arriving temporally, one shall 
not be pressed with order effect. 
Basic model to check the feasibility of merging of the 
nearest two knowledge packets: 
Let 1ρ and 2ρ are the densities of the knowledge packets to 
be merged and _updated ρ  is the density of the proposed 
updated knowledge packet, which can be computed as per 
eq. (9). If the _updated ρ  is greater than or equal to 

1, 2min( )ρ ρ then merging of knowledge packets is allowed. 
It should be observed that, a suitable strategy is presented 
for merging the KPs, but not for splitting a KP for two 
reasons. (i) Since merging operation is prevented under the 
unfavorable conditions the question of subsequent splitting 
does not arise and (ii) splitting of KP requires access to the 
raw data which has been assumed to be inaccessible. The 
alternative for access to raw data could be re-constructing 
the data with the available knowledge, which is 
discouraged due to computational over burden [10]. 
The simplest way to avoid order effects is to find the 
distance between all the available KPs and merge the 
nearest KPs. Upon every merge, the distance between the 
remaining KPs has to be re-computed. Undoubtedly, the 
number of KPs are very much less than the actual data 
itself. However, if we could think of a heuristic which can 
reduce the complexity of constructing the distance matrix, 
it saves lot of space and time. Here we present a possible 
heuristic which significantly reduces the resources required 
for computation. 
Model for generating the knowledge of a source or a 
batch: 
Summation of all the KPs of a source or a batch is referred 
to as batch knowledge. 
Number of elements that have contributed to the 

knowledge of a batch is given by
1

j

i
i

n
=
∑ , where j is number 

of KPs and ni is the number of elements of the KP �i�. µ 
and σ can be calculated by repeatedly executing the eq. (7) 
and eq. (8) till all the KPs of the batch are processed. 
Given two histograms H1 and H2 defined over a same 
variable �i� with �N� number of bins, the basic addition 
operation can be defined as: 

( )
1

1 2 1( ) 2( )
N

i
H H H i H i

=
+ +=∑  --- (12) 

The above model of addition of two histograms can be 
extended for addition of all histograms of a batch. The 
resulting histogram can be transformed into a regression 
line as explained above to generate the batch knowledge. 
Alternatively, regression line of each batch can also be 
constructed by repeated addition of the regression lines of 
each of the KPs of that batch using eq. (10) and eq.(11). 
To speed up the process, knowledge generation of each 
batch could be done in parallel. Then the distance between 
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the batch knowledge of each of the batches could be 
obtained as we obtained the distance between KPs. Then 
the nearest two batches to be selected for merging. This 
reduces the search space significantly. 
Alternatively, we can obtain the batch-knowledge from all 
the elements of a batch before applying the learning 
mechanism at the source itself and send the batch-
knowledge along with the KPs of the batch. 
Basic model for merging of knowledge packets of the 
nearest two batches: 
Let us assume that out of the available batches of data, the 
nearest two batches are Bi and Bj and the number of 
knowledge packets (k) in each batch could be different. 

{ }1 2 3, , ...i i i i ipB k k k k=    --- (13) 

{ }1 2 3, , ...j j j j jqB k k k k=   --- (14) 

Let us assume that the knowledge packets of Bi are to be 
moved to Bj during the process of merging. 
Let us assume that 1ik is nearest to 3jk and merging is 

agreed, then 3jk grows because of the merger of 1ik in it 
and its distance with the other packets within Bj could get 
reduced inducing further merging with Bj. The same 
process could happen in Bj also and the number of packets 
gets reduced after every merging. If merging is not agreed, 

1ik is moved to Bj as 1jqk + . In either case, distance matrix 
of Bi and Bj has to be dynamically updated. Once all the 
packets of Bi are moved to Bj, number of batches gets 
reduced and the distance between the batches to be 
recomputed to find the next nearest two batches. 

IV. ALGORITHM 
A simple algorithmic form of the main procedure of 
kruskal�s like method [14] of merging the KPs to avoid 
order effects is provided in the following section. 
Algorithm: Avoiding concept level order effects during 
incremental learning through clustering in a distributed 
environment  
 

1) Apply DBSCAN [13] clustering algorithm on the 
data available at each source. Extract knowledge 
of each of the resulting clusters, which is in the 
form of KPs and send it to a third party location. 
Also send the knowledge of the entire source 
which can be termed as batch knowledge. 

2) At the third party location, 
while (no-of-batches > 1) 

Find distance_between_batches using the batch- 
knowledge and pick the nearest batches; 
Among the nearest batches, identify one of the  
batch as source_batch and the  
other as destination_batch; 
while (no-of-KPs of the destination-batch > 0) 
    Find distance between source-batch KPs and  
    destionation-batch KPs 
    Identify the nearest KPs; 

                  if (the nearest KPs can be merged as per the  
                     specified condition) 

        Merge; 
        Check for induced merging; 
         while (no-of-KPs of the source-batch > 1) 
              Find distance between the grown-up KP  
             and the existing KPs of the   

source_batch; 
              if (induced merging is possible as per the  
                     specified condition), 

     Merge; 
              else 
            break; /* go out of the present while loop  
                                                                               

*/ 
            end   /* end of if-else */ 
         end     /* end of while loop */ 
   else 
      break; /* go out of the while loop */ 
  end  /* end of if-else */ 

         end  /* end of while loop */ 
         Update the knowledge of source-batch; 
         Delete the knowledge of destination-batch; 
         Reduce the no-of-batches by one; 
      end /* end of outermost while loop */ 

3) stop 
The other method differs only in the way the sources or 
batches are merged. After merging the nearest two batches 
to get a combined batch, distance between the combined 
batch and the remaining batches is computed. The batch 
which is nearest to the combined batch is merged next. As 
brought out in section 1, this method of merging can be 
seen as Prim�s like and the earlier one as Kruskal�s like 
methods [14]. 
 
4.1 Complexity analysis 
 

(i) Time complexity of DBSCAN clustering 
mechanism is O(nlogn) [20] [21] where �n� is 
the number of samples in each chunk;  If 
there are �k� number of sources, then the time 
complexity becomes k * (nlogn);  

(ii) Extracting knowledge of each cluster: 
If there are m clusters in a source and if there 
are d dimensions of each cluster, then for 
extracting knowledge of each source, the 
time required is O(md); 
For k number of batches, the time required to 
extract knowledge is k * (md) 

(iii) Finding distance between knowledge packets  
               (KPs): 

(a) If there are m1 KPs obtained from one 
batch and if m2 KPs are obtained from 
another batch, and if m1 is almost equal 
to m2  time required to find distance 
between them is m1 (m1 -1)/2; 

(b) Re-computation of the distance matrix 
has to be done with a merge of each KP. 
At each step a KP gets reduced by one. 



Int. J. Advanced Networking and Applications                                                                                                               587 
Volume: 02, Issue: 02, Pages:581-596  (2010) 

In the worst case, this procedure has to 
be repeated m1 (m1-1)/2 times.  
 

The Overall complexity is:  
[k * (nlogn)] + [k * (md)] + [m1 (m1-1)/2] * [m1 (m1-1)/2];  
� O (m4n); 
It should be noted that m is the number of knowledge 
packets and since m n� , we can argue that m is always 
bound by a constant. In practical scenarios it is also true 
that one could be interested in designing predefined 
number of KPs only. Thus the above expression may be 
simplified to O ( λ n) where λ  is in terms of m. 
 
4.2 An illustrative example 
 
A synthetic dataset in a 2D space has been used for the 
sake of clear understanding of the proposed method 
although the method can be applied to any finite number of 
dimensions as can be seen in the experimentation part in 
section V. 
The synthetic dataset is of 20,000 points in a 2D space 
distributed over five classes of unit radius and is as shown 
in Fig 5. A similar dataset has been used by Liaden 
O�Collagahan et al [22] to simulate a stream of data for the 
study of a clustering algorithm. 
The initial dataset of 20,000 points is divided into ten 
batches by a random selection of samples from the initial 
dataset. Each batch of the thus obtained batches of data is 
assumed to be available at a different source or different 
location. 
The DBSCAN parameters Eps and Minpts were set to 0.15 
and 10 respectively. These values were obtained through 
trial and error mechanism. Upon executing the DBSCAN 
procedure on the batches of data at their respective 
locations, we obtained few clusters and outliers. As 
brought out earlier in section 1, the outliers of each stage 
are considered as single element clusters of that stage. The 
total number of clusters of each stage is as shown in the 
second column of Table II. The extracted knowledge 
(batch-knowledge) of each of the complete batches of data 
is as shown in the subsequent columns of Table II. 
Distance between the KPs of these batches is obtained 
using regression based distance measure [15, 16]. For clear 
understanding of the distances between each of the batches 
of data, the obtained distances are presented in the form of 
a matrix in Table III. 
Based on the distance matrix the nearest batches (here B5 
and B6) are selected for merging, there by reducing the 
requirement of huge computational resources which was 
required had we considered finding distance between all 
the KPs (here 237 in total) available at the centralized 
location. 
As can be seen from Table III, B5 and B6 are the two 
nearest batches. After merging of KPs between B5 and B6, 
some of the knowledge packets of B6 have got merged with 
the KPs of B5 and the remaining KPs have remained as 
additional KPs of B5 making B6 empty. As shown in Table 
III, B5 has 22 KPs and B6 has 14 KPs. Had none of the 
KPs of B6 got merged with the KPs of B5, it would have 

resulted in 36 (22+14) KPs in the source batch B5. The 
merging and induced merging brought down the number of 
KPs to 29 in B5.The overall procedure reduces the number 
of batches by one and the distance matrix is recomputed to 
find the next nearest batches. Table IV gives the sequence 
of merging the batches and the number of knowledge 
packets at each stage. 
In Table IV, first column of each stage indicates the 
number of KPs of a batch prior to merging and second 
column indicates number of KPs of a batch after merging. 
Highlighted numerals indicate the KPs considered for 
merging at that stage. Highlighted and italicized numerals 
indicate the updated KPs of that batch because of merge. 
Highlighted, italicized and struck-off numerals indicate the 
deletion of KPs of the merged batch. After each merge (i) 
knowledge of the grownup batch is updated and the 
knowledge with respect to the merged batch is deleted and 
(ii) distance between batches is re-computed and the next 
nearest batches are selected for merging. This method of 
merging can be termed as Kruskal�s like method of 
merging. Instead of re-computing the distance matrix 
between batches, if the distance between the grownup 
batch and remaining batches is obtained, and if the nearest 
batch is merged with the grownup batch, the resulting 
sequence of merging can be viewed as Prim�s like 
merging. Table V gives the sequence of merging of 
batches in Prim�s like method. The description of Table V 
is similar to that of Table IV. 
Since the algorithm employed for learning is insensitive to 
the order of presentation of data samples, we could not 
find any difference in the results obtained by Kruskal�s 
like and Prim�s like methods of merging. However, one 
can see the order effect through optimality at each stage, as 
it has been pointed out in [10], that optimality and storage 
criteria are sufficient for ensuring order independence. In 
the following paragraph, we can examine these issues from 
the results shown in Tables IV and V. 
If m and n are the number of KPs of two batches to be 
merged, an ineffective combination of two batches is the 
one in which the resulting number of KPs is equal 
to ( )m n+ . A good combination should show the number 
of KPs to be less than ( )m n+ . A very good combination 
should be equal to ( , )smaller m n ; further it should be less 
than the ( , )smaller m n . To measure the optimality, the 
percentage of reduction at each stage is calculated. For a 
comparative analysis with the proposed methods of 
merging the batch-knowledge, we have merged the batches 
at random and the percentage of reduction is shown in Fig 
6 and Fig 7. 
It is clear from the graph shown in Fig 6 that the 
percentage of reduction in the KPs in the initial stages of 
Kruskal�s like merging is more when compared to random 
merging. For random merging, percentage of reduction is 
higher at the last stage. Further it is also clear that the 
stability in reduction has reached at a stage prior to the last 
stage in Kruskal�s like merging. In fact, we would have 
obtained the stability at a much earlier stage; however 
because of the constraint of avoiding over merging, we 
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could see the stability at a later stage. Obtaining stability in 
earlier stages is quite significant in this case as we can 
terminate the process of learning and can save lot of time 
required to process the remaining batches. 
A Similar comparison between Prim�s like method of 
merging and the random merging is depicted in the graph 
shown in Fig 7. The graph shown in Fig 8, shows the 
comparison between Kruskal�s like and Prim�s like 
methods of merging. 
The advantages of the above methods of merging are (i) 
the computational resources required for merging the 
nearest batches is very less when compared with 
processing the complete set of KPs of all the batches at 
once (ii) reduction of KPs at the very beginning implies 
reduction in search space and the reduction of time 
required in the subsequent stages of merging (iii) process 
of assimilation of knowledge packets can be terminated 
once we notice that there is no change in the knowledge by 
the addition of subsequent stages of merging (iv) 
prediction of final knowledge could become possible by 
analyzing the trend at each stage of merging (vi) if any one 
is interested in the knowledge of the intermediate stages, 
most accurate intermediate knowledge can be obtained. 
We are exploring further reduction of computational time 
by employing parallel processing. 
Finally repeated merging of the nearest KPs gave five KPs. 
The actual values of each of the five initial KPs and the 
incrementally generated KPs and their difference in 
percentage are as shown in Table VI. 
It is also to be noted that since there is no difference in 
actual and the obtained values of the parameter n of each 
of the KPs, it has been omitted from Table VI. 

V. EXPERIMENTATION 
We have conducted experiments on two bench mark 
datasets � (i) 700X3 dataset [14] which is a dataset of three 
dimensions with 700 samples distributed over five classes 
and (ii) Iris [23] which is a four dimensional dataset of 150 
samples distributed over three classes. 
 
5.1 700X3 dataset [14] 
 
This dataset has 700 elements with 3 features. There are 
five classes with 140 samples in each class. First 140 
samples belong to class 1, next 140 belong to class 2 and 
so on. To get the clear separation of classes, all the three 
features are mandatory. This dataset has been used as a 
regression line symbolic sample set and has been 
established that the first two principle components are 
good enough to classify this symbolic dataset [14]. As 
done in section 4, for the sake of simulating the distributed 
data, we have divided the original dataset into ten batches 
of 70 samples each by a random selection of samples and 
presumed that each batch of data is available at a different 
location.  Knowledge of each batch of data is extracted to 
obtain the batch-knowledge of the respective batches. 
Learning is performed on each batch of data by setting the 
DBSCAN [13] parameters MinPts and Eps to 2 and 6 

respectively. The number of clusters obtained by learning 
from each batch of data is shown in Table VII. 
Knowledge of the resulting clusters is extracted to obtain 
the corresponding KPs.  Distance between the batch-
knowledge is obtained to find the nearest batches. The 
batches were merged as per the proposed Kruskal�s like 
and Prim�s like methods of merging. For a comparative 
analysis, batches were also merged randomly. The 
obtained comparative percentage of reduction at each stage 
is shown in Fig 9 to Fig 11. 
From the graphs, it is very clear that the process of 
learning could be terminated after stage 6 in both Prim�s 
like as well as in Kruskal�s like merging; where as in 
random merging stability has reached only at stage 9. 
 
5.2 Iris data [23] 
 
The standard iris dataset [23] has150 points in a 4-
dimensional space. First 50 samples belong to class 1; the 
second 50 belong to class 2 and the third 50 belong to 
class 3; Class 1 is clearly separable from class 2 and 3, 
whereas class 2 and 3 are not separable. This dataset has 
been used extensively to study the behavior of different 
clustering algorithms.  
As informed earlier, the given dataset is divided into 6 
batches of 25 elements each by selecting the samples 
randomly. With the DBSCAN parameters MinPts set to 2, 
Eps set to 1.4, the obtained clusters from each batch are as 
shown in Table VIII. 
From the graphs shown in Fig 11 to Fig 14, it is clear that 
the percentage of reduction in KPs of the proposed 
methods dies down with the progression of learning, 
making way to stop the learning process. 

VI. DISCUSSIONS 
In our approach, we transmit only the knowledge and 
hence applicable to applications which demands privacy 
preserving. The outlier data which we transmit as a KP 
will not reveal the details of the data and in the worst case 
we can claim that the privacy of such data is unwarranted.  
Our approach is similar to that of Diona et al [9] which 
preclude the transmission of data and allows the 
transmission of minimal sufficient statistics. However, the 
minimal sufficient statistics transmitted in [9] is suitable 
only to the Gaussian data where as the statistics that we 
transmit is more robust and should be applicable any 
distribution. 
Our approach provide novel mechanisms to sequence the 
process of merging the concepts arrived from different 
sources where as in [9] the concepts are some how merged 
without bothering about the order effects [1]. 

VII. CONCLUSION 
As a first step in avoiding or minimizing the order effect at 
the level of concepts during incremental learning, we have 
employed a learning mechanism which is insensitive to the 
order of presentation of data samples. The learning 
mechanism employed is density based spatial clustering of 
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applications with noise (DBSCAN) and learning is 
performed on the data which is physically distributed over 
multiple locations. We advocate employing the learning 
mechanism at the venue of the data and transmitting the 
knowledge of each of the resulting clusters to a centralized 
location for incremental augmentation. The knowledge of 
each of the resulting clusters is being referred to as 
concept or knowledge packet (KP). To strengthen the KPs, 
a set of variables including a histogram based regression 
line is employed in describing each of the KP.  The data 
available at each of the source is considered as one batch 
of data and the knowledge of each of such batches of data 
is referred to as batch-knowledge.  To overcome the 
tendency of incremental learning mechanisms in preferring 
the local optimum in place of global one, distance between 
the batch-knowledge of the available batches is computed 
and at any stage the KPs of the nearest two batches are 
allowed to participate in the incremental knowledge 
generation process (Kruskal�s like merging). To avoid 
order effect during the process of merging the KPs of the 
nearest two batches, a novel regression based distance 
measure is employed to find the distance between the KPs 
and the nearest KPs are merged subject to the satisfaction 
of certain merging conditions to avoid over merging. As an 
alternative to the method of Kruskal�s like merging, 
distance between the batch-knowledge of the grownup 
batch with the batch-knowledge of the remaining batches 
is computed and the nearest batch is merged with the 
grown up batch (Prim�s like merging).   For a clear 
understanding, a synthetic dataset in a 2-D space is used 
for the illustration of proposed methods. The proposed 
methods are validated using two bench mark datasets. As a 
future work, we would like to apply the said methods on 
the datasets containing classes of variable density and 
chain like structures, in which case we may have to find an 
alternative to DBSCAN. We are also exploring the 
possibility of applying these methods on remotely sensed 
images in the framework of incremental learning.  
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TABLES AND FIGURES 

Table I:   Knowledge parameters for Incremental learning 
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           Where, µ � Mean or Centroid; σ � Standard deviation;   
                       L � Regression Line in terms of slope and intercept; Cl � Cluster;  

Table II:  Knowledge of each batch 
 

Batch 
 No 

No. of 
clusters 

X – (Dimension 1) Y – (Dimension 2) 
Slope Intercept Slope Intercept 

B1 16 0 1 0.1812 0.0994 
B2 28 0.0814 0.7220 0.1776 0.1020 
B3 28 0.1697 0.4042 0.1761 0.1094 
B4 26 0.2378 0.1333 0.2056 0.0348 
B5 22 0.2759 -0.0483 0.2652 -0.1156 
B6 14 0.2996 -0.2204 0.2852 -0.1633 
B7 25 0.2929 -0.3159 0.2298 -0.0242 
B8 32 0.2655 -0.3336 0.1851 0.0837 
B9 28 0.2112 -0.2995 0.1761 0.1094 
B10 18 0.1397 -0.2132 0.1798 0.0982 

 
 

Table III: Distance matrix for distance between batches 
 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 
B1 0 4997.3 5000.6 5001.7 5002.4 5002.9 5003.0 5003.1 5003.8 5005.1 
B2 4997.3 0 3.3114 4.4595 5.1805 5.6638 5.8312 5.9213 6.5307 7.8438
B3 5000.6 3.3114 0 1.1836 1.9049 2.3880 2.5552 2.6470 3.2194 4.5682
B4 5001.7 4.4595 1.1836 0 0.7214 1.2044 1.3717 1.7318 2.4474 3.7337
B5 5002.4 5.1805 1.9049 0.7214 0 0.4834 0.9460 1.5625 2.2785 3.5647
B6 5002.9 5.6638 2.3880 1.2044 0.4834 0 0.5946 1.2114 1.9273 3.2136
B7 5003.0 5.8312 2.5552 1.3717 0.9460 0.5946 0 0.6171 1.3327 2.6191
B8 5003.1 5.9213 2.6470 1.7318 1.5625 1.2114 0.6171 0 0.7170 2.0024
B9 5003.8 6.5307 3.2194 2.4474 2.2785 1.9273 1.3327 0.7170 0 1.3488
B1

0 5005.1 7.8438 4.5682 3.7337 3.5647 3.2136 2.6191 2.0024 1.3488 0
 

Table IV: Merging the nearest batches (Kruskal’s like) 
 
 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
B1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 175  
B2 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 159 159 159   
B3 28 28 28 28 28 28 28 28 28 28 28 139 139 146 146 159     
B4 26 26 26 26 26 55 55 55 55 120 120 139 18 146       
B5 22 29 29 29 29 55 56 70 70 120 18 18         
B6 14 29 25 56 56 56 28 70 18 18           
B7 25 25 32 56 28 28 18 18   
B8 32 32 28 28 18 18               
B9 28 28 18 18                 
B10 18 18                   

 
Table V: Merging the nearest batches (Prim’s like) 
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 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
B1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 175 175  
B2 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 159 159 175   
B3 28 28 28 28 28 28 28 28 28 28 28 139 139 146 146 159     
B4 26 26 26 26 26 26 26 106 106 120 120 139 18 146       
B5 22 29 29 49 49 80 80 106 28 120 18 18   
B6 14 29 25 49 32 80 28 28 18 18   
B7 25 25 32 56 28 28 18 18             
B8 32 32 28 28 18 18               
B9 28 28 18 18                 
B10 18 18                   
 

Table VI:  Summary of deviation of Knowledge parameters 

 
Knowledge 
Parameter 

Values 
 

KP1 
   f1        f2 

KP2 
   f1        f2 

KP3 
   f1               f2 

KP4 
   f1               f2 

KP5 
   f1              f2 

µ Actual 
Computed 
Diff (%) 

1.00 
0.99 
1.00 

1.00 
1.00 
0.00

4.00 
3.99 
0.25

4.00 
4.00 
0.00

4.00 
3.99 
0.25

1.00 
1.00 
0.00

2.50 
2.49 
0.40

2.50 
2.50 
0.00 

1.00 
0.99 
1.00 

4.00 
4.00 
0.00

σ Actual 
Computed 
Diff (%) 

0.50 
0.50 
0.00 

0.50 
0.50 
0.00 

0.50 
0.50 
0.00 

0.50 
0.50 
0.00 

0.50 
0.49 
2.00 

0.50 
0.50 
0.00 

0.50 
0.49 
2.00 

0.50 
0.50 
0.00 

0.50 
0.49
2.00 

0.50 
0.50 
0.00 

L (slope) Actual 
Computed 
Diff (%) 

0.14 
0.14 
0.00 

0.14 
0.14 
0.00 

0.21 
0.21 
0.00 

0.14 
0.14 
0.00 

0.21 
0.21 
0.00 

0.14 
0.14 
0.00 

0.28 
0.28 
0.00 

0.28 
0.28 
0.00 

0.14 
0.14 
0.00 

0.21 
0.21 
0.00 

L 
(Intercept) 

Actual 
Computed 
Diff (%) 

0.49 
0.49 
0.00 

0.49 
0.49 
0.00

-0.28 
-0.28 
0.00

-0.28 
-0.28 
0.00

-0.28 
-0.28 
0.00

0.49 
0.49 
0.00

-0.16 
-0.16 
0.00

-0.16 
-0.16 
0.00 

0.49 
0.49 
0.00 

-0.28 
-0.28 
0.00

 

Table VII Number of clusters obtained from each batch of 700X3 data 

Batch 
 No 

No. of clusters 

B1 06
B2 06 
B3 05 
B4 06 
B5 05 
B6 06 
B7 05 
B8 06
B9 06
B10 05 

 

Table VIII Number of clusters obtained from each batch of Iris data 

Batch  No No. of clusters 
B1 04 
B2 04 
B3 03 
B4 03 
B5 02 
B6 03 
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Fig. 1 A Sample Histogram 

 
 

Fig. 2 Cumulative Histogram for the histogram of Fig. 1 

 
 

Fig. 3 Regression Line fitting on a normalized histogram 

 
Fig. 4 Regression Distance Measure [15, 16] 
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Fig. 5 A synthetic dataset of 20,000 points in a 2D space distributed over 5 classes 

 
Fig. 6 Percentage of reduction in KPs by Kruskal’s like method and random method of merging 

 
Fig. 7 Percentage of reduction in KPs by Prim’s like method and random method of merging 

 
Fig 8. Percentage of reduction in KPs by Prim’s like and Kruskal’s like methods of merging 
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Fig. 9 700X3 dataset’s percentage of reduction in KPs by Kruskal’s like method and random method 

 

 
Fig. 10 700X3 dataset’s percentage of reduction in KPs by Prim’s like method and random method of merging 

 
Fig. 11 700X3 dataset’s percentage of reduction in KPs by Prim’s like and Kruskal’s likemethod of merging 

s 
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Fig. 12 Iris dataset’s percentage of reduction in KPs by Kruskal’s like method and Random method of merging 

 

 
Fig. 13 Iris dataset’s percentage of reduction in KPs by Prim’s and Random method of merging 

 
Fig. 14 Iris dataset’s percentage of reduction in KPs by Prim’s like and Kruskal’s like methods of merging 

 
 


